
Modular Verification of
Higher-order Functional Programs

Ryosuke Sato and Naoki Kobayashi

The University of Tokyo
{ryosuke,koba}@kb.is.s.u-tokyo.ac.jp

Abstract. Fully automated verification methods for higher-order func-
tional programs have recently been proposed based on higher-order model
checking and/or refinement type inference. Most of those methods are,
however, whole program analyses, suffering from the scalability prob-
lem. To address the problem, we propose a modular method for fully
automated verification of higher-order programs. Our method takes a
program consisting of multiple top-level functions as an input, and re-
peatedly applies procedures for (i) guessing refinement intersection types
of each function in a counterexample-guided manner, and (ii) checking
that each function indeed has the guessed refinement intersection types,
until the whole program is proved/disproved to be safe. To avoid the
whole program analysis, we introduce the notion of modular counterex-
amples, and utilize them in (i), and employ Sato et al.’s technique of
reducing refinement type checking to assertion checking in (ii). We have
implemented the proposed method as an extension to MoCHi, and con-
firmed its effectiveness through experiments.

1 Introduction

Thanks to the recent advance in higher-order model checking and refinement
type inference, various methods and tools for automated verification of functional
programs have been proposed recently [9, 15, 21, 20, 12]. For example, MoCHi [9,
18], a software model checker for functional programs, statically checks whether a
given program may fail due to run-time errors such as assertion failures, uncaught
exceptions, and pattern match failures, in a fully automatic manner. It outputs
refinement (intersection) types as certificates of the safety if the program does
not fail, and outputs a concrete execution path that causes a run-time error
otherwise. Most of the fully automated verification methods proposed so far are
whole program analyses, suffering from the scalability problem. (On the other
hand, semi-automated methods that rely on users’ annotations on invariants
usually work in a compositional manner [6, 16, 11, 19, 28].)

To address the scalability problem, we propose a modular verification method
for higher-order functional programs, which utilizes an existing software model
checker for functional programs as a backend. An input for the verification
method is a pair consisting of (i) a program P of the form:

let rec f1 x̃1 = t1 in · · · let rec fn x̃n = tn in fn

(which is abbreviated as 〈f1 x̃ = t1, . . . , fn x̃ = tn〉) and (ii) a refinement type
specification τ . Here, f1, . . . , fi may occur in ti.

1 Each function definition fi x̃i =
ti, which may contain local function definitions, is treated as a “module”, i.e.,
the unit of verification in our modular verification method. The goal is to check
whether |= P : τ , i.e., whether P has (semantically) type τ (which entails that
P does not fail; for example, P has type int → int only if, for every integer n,
P n does not fail, and either returns an integer or diverges).

Our method infers refinement types of each function by using the following
two components:

– typeSynthesizer, which generates a candidate refinement type environment
f1 : σ1, . . . , fn : σn (which maps each fi to the set σi of types) such that

τ ∈ σn from the type checking problem
?

|= 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉 : τ
and modular counterexamples (which will be explained later).

– typeChecker, which checks whether

f1 : σ1, . . . , fk−1 : σk−1 |= fix(fk, λx̃k. tk) : τk

holds (where fix(fk, λx̃k. tk) denotes the recursive function defined by fk x̃k =
tk), given a refinement type environment f1 : σ1, . . . , fk−1 : σk−1, a candi-
date τk of refinement type of fk, and a function definition fk x̃k = tk for some
k ∈ {1, . . . , n}, and outputs a modular counterexample if f1 : σ1, . . . , fk−1 :
σk−1 |= fix(fk, λx̃k. tk) : τk does not hold

Figure 1 describes the overall procedure of our method, utilizing the two
components mentioned above. Given a program P and a refinement type speci-
fication τ , the main function first sets (i) the type environment Γ (which keeps
the set of types that have already been proved to be valid) to the empty type
environment (line 2), (ii) the candidate type environment Γcand to one contain-
ing only fn : {τ} (line 3), and (iii) the set of (modular) counterexamples to the
empty set (line 4). The main function then calls validateTE (line 5). Given the
current type environment Γ and the current candidate type environment Γcand,
the function validateTE checks whether each τ ′ ∈ Γ (fi) is a valid type for fi
for each i ∈ {1, . . . , n}, by repeatedly calling typeChecker (line 10). Here, P (fi)
denotes fix(fi, λx̃i. ti), the function defined by fi x̃i = ti. If τ ′ is a valid type,
then it is added to the set Γ (fi) of valid types of fi (line 11); otherwise the
counterexample returned by typeChecker is added to Π (line 12). If the type
τ of the whole program has been proved correct, then the verification succeeds
(line 13). Otherwise, typeSynthesizer is called to obtain a refined candidate
type environment (line 15), and validateTE is called again (line 16). If there is
no way to refine the candidate, we can conclude that the program is untypable,
i.e., does not meet the specification (line 17).

1 Mutual recursion can be realized by passing fi+1, . . . , fn as arguments of fi. For
example, let rec f1 x = C1[f1, f2] and f2 x = C2[f1, f2] in f2 can be expressed as
let rec f1 f2 x = C1[f1 f2, f2] in let rec f ′2 x = C2[f1 f

′
2, f
′
2] in f ′2.

2

1: main(P, τ) =

2: let Γ = {f1 : ∅, . . . , fn : ∅} in (* types that have been validated so far *)

3: let Γcand = {f1 : ∅, . . . , fn−1 : ∅, fn : {τ}} in (* initial type candidates *)

4: let Π = ∅ in (* the set of counterexamples found so far *)

5: validateTE(P, τ, Γ, Γcand, Π)

6:

7: validateTE(P, τ, Γ, Γcand, Π) =

8: for i=1 to n do (* Check each type candidate *)

9: {for each τ ′ in Γcand(fi) do

10: match typeChecker(Γ, P(fi), τ ′) with

11: OK -> add τ ′ to Γ (fi)
12: | NG(π) -> add π to Π };
13: if τ ∈ Γ (fn) then return "yes"

14: else

15: match typeSynthesizer(P, τ, Π) with

16: Some(Γ ′cand) -> validateTE(P, τ, Γ, Γ ′cand, Π)

17: | None -> return "no"

Fig. 1. The overall procedure

Our verification method is modular in that the (semantic) typability of each
function definition is checked separately by using typeChecker. The component
typeSynthesizer takes the whole program as an input, but as we describe later,
it looks at only part of the program that is relevant to the set Π of modular
counterexamples found so far. Thus, our new method is expected to scale to
larger programs than the previous whole program analysis approach [9, 18], as
confirmed by experiments.

The description above explains how to verify a single whole program in
a modular manner. There is a further benefit when our modular verification
method is applied to verification of multiple programs that share the same li-
brary. Suppose we have a library function f x = t1 and two client functions
g y = t2 and h z = t3, whose refinement type specifications are τ2 and τ3. In that

case, we run the procedure in Fig. 1 first for
?

|= 〈f x = t1, g y = t2〉 : τ2. If the
verification is successful, we obtain a witness type environment f : σ1, g : σ2.
The information that f has types σ1 can then be used in the verification of the
other client program. For that purpose, when the procedure in Fig. 1 is called

for the query
?

|= 〈f x = t1, h z = t3〉 : τ3, we just need to set Γ (f) to σ1 (instead
of ∅) on the second line. If the type information f : σ1 is sufficient, then the
verification of h will succeed without re-analyzing the definition of f . Otherwise,
additional types for f may be inferred by reanalyzing the definition of f , and
can later be used for analyzing other client programs.

The rest of this paper is structured as follows. Section 2 introduces the target
language of our verification method. Section 3 overviews our method through an
example. Section 4 describes the two components. Section 5 reports an imple-

3

P (programs) ::= 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉

t (terms) ::= n | x | ∗int | op(t̃) | fix(f, λx. t) | t1 t2
| if ` t1 then t2 else t3 | fail

κ (simple types) ::= int | κ1→ κ2

Fig. 2. Syntax

mentation and experimental results. Section 6 discusses related work, and Sect. 7
concludes the paper.

2 Language

In this section, we introduce the target language of our verification method.

2.1 Syntax and Semantics

The target of our method is a simply-typed, call-by-value, higher-order functional
language with recursion. Its syntax is summarized in Fig. 2.

We use the meta-variables x, y, z, f , g, . . . for variables. We write ·̃ for a
sequence; for example, x̃ stands for a sequence of variables. For the sake of sim-
plicity, we consider only integers as base type values. We represent Booleans us-
ing integers, and sometimes write true for 1 and false for 0. The meta-variables
n and op range over the sets of integers, and primitive operations on integers,
respectively.

A program P is a sequence of recursive function definitions 〈f1 x̃1 = t1, . . . ,
fn x̃n = tn〉. Here, we require that x̃i may not be an empty sequence and fi
may occur only in ti, . . . , tn. When P = 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉, we write
dom(P) for {f1, . . . , fn}, and P (fi) for fix(fi, λx̃i. ti).

The term ∗int evaluates to some integer in a non-deterministic manner. We
write ∗bool for ∗int ≥ 0, which represents a non-deterministic Boolean. The term
op(t1, . . . , tk) applies the operation op to the values of t1, . . . , tk. We sometimes
use the infix notation for a binary operation and write x op y for op(x, y). The
term fix(f, λx. t) denotes the recursive function defined by f x = t.2 We write
λx. t for fix(f, λx. t) if f does not occur in t. The term t1 t2 applies t1 to t2. We
write let x = t1 in t2 for (λx. t2) t1, and also write t1; t2 if x does not occur in t2.
The conditional expression if ` t1 then t2 else t3 evaluates t2 if the value of t1 is
non-zero and t3 otherwise; ` is a label used only during verification. We assume
that a unique label is assigned to each conditional expression. We omit labels

2 Thus, whether a recursive function is introduced by a top-level function definition
or by fix(f, λx. t) does not matter for an execution of a program; it matters only for
the modular verification method, which treats each top-level function definition as
the unit of modular verification.

4

E[∗int] −→P E[n]

E[op(v1, . . . , vk)] −→P E[[[op]](v1, . . . , vk)]

E[fix(f, λx. t) v] −→P E[[v/x][fix(f, λx. t)/f]t]

v 6= 0

E[if ` v then t1 else t2] −→P E[t1]

v = 0

E[if ` v then t1 else t2] −→P E[t2]

(f x̃ = t) ∈ P
E[f] −→P E[fix(f, λx̃. t)]

E 6= []

E[fail] −→P fail

E (evaluation contexts) ::=[] | op(ṽ, E, t̃) | E t | v E | if ` E then t1 else t2

v (values) ::= n | fix(f, λx. t)

Fig. 3. Operational semantics of the language

when they are not important. The term fail aborts the execution. We write
assert`(t) for if ` t then 1 else fail, which aborts the program if the value of t
is false (i.e., 0). We also write assume` (t) for if ` t then 1 else fix(f, λx. f x) 0.

We consider only programs that are well-typed in the standard simple type
system; the typing rules are omitted. We write K `ST t : κ if t has simple type
κ under simple type environment K.

The (small-step) operational semantics of the language is defined in Fig. 3.
In the figure, [[op]] is the semantic integer function denoted by op. We write −→∗P
for the reflexive and transitive closure of −→P . We omit the subscript P when
it is clear from the context.

2.2 Refinement Intersection Types

We use refinement intersection types for describing properties of programs or
terms. The syntax of (refinement intersection) types is defined by:

τ (refinement types) ::= {x : int | φ} | (x : σ)→ τ

σ (intersection types) ::= {τ1, . . . , τk}κ
φ (refinement predicates) ::= n | x | op(φ1, φ2).

The refinement type {x : int | φ} denotes the set of integers x that satisfy the
refinement predicate φ. For example, {x : int | x ≥ 0} is the type of non-negative
integers. We often abbreviate {x : int | true} to int. The intersection type

5

f1 : σ1, . . . , fn : σn |=P t : τ
def
=

f1 : ST (σ1), . . . , fn : ST (σn) `ST t : ST (τ) and

|=P [v1/f1, . . . , vn/fn]t : τ for any v1, . . . , vn s.t. |=P
v,∧ vi : σi for all i ∈ {1, . . . , n}

|=P t : τ
def
=

`ST t : ST (τ), t 6−→∗P fail, and |=P
v v : τ for every v such that t −→∗P v

|=P
v n : {x : int | φ} def

= |=P
p [n/x]φ

|=P
v fix(f, λx. t) : (y : σ)→ τ

def
=

|=P fix(f, λx. t) v′ : [v′/y]τ for every v′ s.t. |=P
v,∧ v

′ : σ

|=P
v,∧ v : {τ1, . . . , τn}κ

def
= `ST v : κ and |=P

v v : τi for all i ∈ {1, . . . , n}

|=P
p φ

def
= v = true for any v s.t. φ −→∗P v

Fig. 4. Semantics of types

{τ1, . . . , τk}κ describes values that have type τi whose simple type is κ for every
i ∈ {1, . . . , k}. We often omit the subscript κ when they are not important, and
treat {τ1, . . . , τk}κ as a set of refinement types. The type (x : σ)→ τ denotes the
set of functions that take an argument v of (intersection) type σ and return a
value of type [v/x]τ . For example, (x : {y : int | true})→{r : int | r ≥ x} is the
type of functions that take any integer as an argument and return an integer no
less than the argument. In (x : σ)→ τ , we allow x to occur in τ only if σ is of
the form {y : int | φ}. In other words, we do not allow dependencies on function
variables. We write σ→ τ for (x : σ)→ τ if x does not occur in τ .

We say that τ is a refinement of a simple type κ if τ :: κ is derivable from
the following rules:

{x : int | φ} :: int
σ :: κ1 τ :: κ2

((x : σ)→ τ) :: (κ1→ κ2)

τi :: κ for each i ∈ {1, . . . , n}
{τ1, . . . , τn}κ :: κ

Henceforth, we consider only refinement types and intersection types that are
refinements of some simple types. For such a refinement type τ (an intersec-
tion type σ, resp.), the simple type κ such that τ :: κ (σ :: κ, resp.) is uniquely
determined. We write ST (τ) (ST (σ), resp.) for it. We also write ST (Γ) for
f1 : ST (σ1), . . . , fk : ST (σk) when Γ = f1 : σ1, . . . , fk : σk.

The semantics of types is defined in Fig. 4 using logical relations. The relation
|=P

v v : τ means that the value v has type τ , and |=P t : τ means that
reduction of the closed (where the top-level functions f1, . . . , fn are considered
bound variables) term t never fails, and that every value v (if there is any) of
t has type τ . The relation Γ |=P t : τ (where Γ is a type environment of the
form f1 : σ1, . . . , fn : σn) means that for any values v1, . . . , vn that have types
σ1, . . . , σn, [v1/f1, . . . , vn/fn]t have type τ . We often omit the superscript P
when it is clear from the context.

6

For a program P = 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉 and a type τ as a specifi-
cation, we write |= P : τ if there exists Γ = f1 : σ1, . . . , fn−1 : σn−1 such that
Γ |= P (fn) : τ and Γ |= P (fi) : τij for each i ∈ {1, . . . , n− 1} and τij ∈ σi. We
call such Γ a witness for |= P : τ . The goal of our verification is to check whether
|= P : τ holds for a given program P and a refinement type specification τ .

2.3 Examples

In this section, we introduce two examples. Using the first example, we will
explain how our method works in Sect. 3.

Example 1. Consider the following program Psum:

〈 add x y = if `1 y ≤ 0 then x else 1 + (add x (y − 1)),

sum x = if `2 x ≤ 0 then 0 else add x (sum (x− 1)),
main n = assert`3(0 ≤ sum n) 〉.

The function main takes an integer n as an argument, computes the sum of
integers up to n, and asserts that the sum is no less than 0. The relation |=
Psum : int→ int means that main n never fails for any integer n. It is witnessed
by the following type environment Γsum:

add : {{x : int | x ≥ 0}→ int→{r : int | r ≥ 0}} ,
sum : {int→{r : int | r ≥ 0}} ,
main : {int→ int} .

ut
Example 2. Consider the following program Ptwice:

〈 mult x y = if `1 y = 0 then 0

else if `2 y < 0 then −x+ mult x (y + 1)

else x+ mult x (y − 1),

twice f x = f (f x),

main n = if `3 n < 0 then assert`4(twice (mult n) 1 > 0) else 0 〉.

The function main takes an integer n as an argument. If n is negative, then it
computes the square of n, and asserts that the square is greater than 0. The
relation |= Ptwice : int → int is witnessed by the following type environment
Γtwice:

mult : {neg→ neg→ pos, neg→ pos→ neg} ,
twice : {{neg→ pos, pos→ neg} → pos→ pos} ,
main : {int→ int} .

Here, pos and neg are the types of positive and negative integers, which are
defined as {n : int | n > 0} and {n : int | n < 0}, respectively. Note here that
intersection types are required to make the analysis context-sensitive; in the
argument type of twice, neg→ pos and pos→ neg represent the types of the
first and second occurrences of f in the body of twice, respectively. ut

7

3 An Overview of the Method through an Example

We explain how our method works using the program Psum in Example 1. Suppose
we wish to verify that |= Psum : int→ int.

On lines 2–4 of the overall procedure in Fig. 1, Γ (a type environment that
records the types that have been proved valid), Γcand (a candidate type environ-
ment), and Π (a set of modular counterexamples) are initialized as follows:

Γ = add : ∅, sum : ∅, main : ∅
Γcand = add : ∅, sum : ∅, main : {int→ int}
Π = ∅

The main procedure then calls validateTE, to check the validity of the type
of main, i.e., whether Γ |= λn.assert(0 ≤ sum n) : int → int, by invoking
typeChecker. To check Γ |= t : τ in general, typeChecker uses the technique of
Sato et al. [17]: we prepare a context CΓ,τ that is most general in the sense that
CΓ,τ [t] fails if and only if Γ |= t : τ , and uses a software model checker [9, 18] to
check whether CΓ,τ [t] fails. In the case of Γ |= λn.assert(0 ≤ sum n) : int→ int,
the context CΓ,int→int is:

let add = λx.λy.fail in let sum = λx.fail in [] ∗int .

An important point to notice here is that instead of using the original definitions
of add and sum, functions synthesized from their types are used. This enables
modular verification of each top-level function. In the present case, since Γ (sum)
is empty, the weakest term (in the sense that it is most likely to fail) is chosen
as the code of sum. A model checker can output the following error path (i.e., a
reduction sequence that leads to fail):3

CΓ,int→int[λn.assert(0 ≤ sum n)]
−→P let add = · · · in let sum = · · · in (λn.assert(0 ≤ sum n))m
−→P let add = · · · in let sum = · · · in assert(0 ≤ sum m)
−→P let add = · · · in let sum = · · · in assert(0 ≤ (λx.fail)m)
−→P let add = · · · in let sum = · · · in assert(0 ≤ fail)

as a counterexample (where m is some integer). Thus, typeChecker can conclude
that Γ |= λn.assert(0 ≤ sum n) : int→ int does not hold. The counterexample
is useful for refining the candidate type environment, but since it is redundant
(it contains information about how the part CΓ,int→int is reduced, which is irrel-
evant to the original program), we keep only information about which branches
have been taken inside the term being checked. In the present case, since no
branch has been taken, typeChecker returns (main, ε) (which means that main

may fail before encountering any conditional branch) as a modular counterex-
ample. Since the only candidate type main : int → int has been rejected, Γ
remains to be empty: add : ∅, sum : ∅, main : ∅.
3 Here, for the readability of the reduction sequence, we treat let-expressions as prim-

itives and extend the evaluation contexts with E ::= · · · | let x = v in E.

8

Now, typeSynthesizer is called to construct a new candidate type envi-
ronment (line 15), using the modular counterexamples collected so far. The
component typeSynthesizer prepares a kind of program slice4 of the origi-
nal program, which covers all the modular counterexamples. Since (main, ε) is
the only counterexample found so far, the following program slice is prepared.

〈 add x y = assume (false) ,
sum x = assume (false) ,
main n = let = 0 ≤ sum n in assume (false) 〉.

The program above contains only the part of the original program that runs the
main function up to the first branch; the rest of the code has been replaced by
the dummy code assume (false), which just diverges and never fails. We then
apply to the above program slice the technique of refinement intersection type
inference [21], which is complete for recursion-free programs (modulo a certain
assumption on the underlying logic). For the above program, we may obtain the
following candidate type environment (note that the type of sum has changed):

add : ∅, sum : {int→ int} , main : {int→ int} .

We then recheck whether the new candidate types are valid (line 16). This
time, typeChecker would fail for sum; it tries to prove that C[fix(sum, λx. · · ·)]
does not fail for

C ≡ let add = λx.λy.fail in [] ∗int,

but finds that the term actually fails when add is called. The new modular coun-
terexample (sum, (`2, else)) (which means that the else-branch has been taken at
`2) is then added. Since Γ has not changed, the type checking for main also fails
again, and typeSynthesizer is called with Π = {(sum, (`2, else)), (main, ε)}.

Suppose that the candidate type environment has been further updated, for
example, to:

add : {int→ int→ int} , sum : {int→ int} , main : {int→ int} .

This time, typeChecker succeeds for add and sum, and add : {int→ int→ int},
sum : {int→ int} are added to Γ . The type check for main fails, however. To
check the type of main, typeChecker tries to prove that C ′[λn.assert(0 ≤ sum n)]
does not fail for

C ′ = let add = · · · in let sum = λx.∗int in [] ∗int,

but the term actually fails when sum = λx.∗int returns a negative integer. From
the error reduction sequence, the new modular counterexample (main, (`3, else))
is extracted and added to Π. (Recall that assert`(b) is treated as a shorthand
form of if ` b then 1 else fail; thus, the else-branch is taken at `3 in the error

4 It is actually an extension of straightline programs [9], and deviates from the stan-
dard notion of program slices; see Sect. 4.

9

reduction sequence.) The component typeSynthesizer then discovers that the
return type of sum should be {r : int | r ≥ 0}.

By repeating these steps, we may end up with the following set of modular
counterexamples (we only keep those that are maximal with respect to the prefix
relation):

{(add, (`1, then)), (add, (`1, else)(`1, then)),

(sum, (`2, else)(`2, then)), (main, (`3, else))}.

The element (sum, (`2, else)(`2, then)) means that, inside the function sum, the
else-branch is taken on the first visit of `2, and then the then-branch is taken
on the next visit. The component typeSynthesizer constructs the following
program slice:

〈 add′ x y = if y ≤ 0 then x else assume (false),
add x y = if y ≤ 0 then x else 1 + (add′ x (y − 1)),
sum′ x = if x ≤ 0 then 0 else assume (false),
sum x = if x ≤ 0 then assume (false) else add x (sum′ (x− 1)),
main n = let b = 0 ≤ sum n in if b then assume (false) else fail 〉.

Here, the functions add and sum have been duplicated (i) to avoid recursion
and (ii) to exclude out the part irrelevant to the modular counterexamples. The
refinement (intersection) type inference [23, 21] is applied to the above program
slice, and the candidate type environment is updated accordingly to:

add : {{x : int | x ≥ 0}→ int→{r : int | r ≥ 0}} ,
sum : {int→{r : int | r ≥ 0}} , main : {int→ int} .

The component typeChecker can now successfully verify that all the above types
are valid, and add them to Γ . Since Γ now contains int→ int as a type of main,
the verification succeeds (on line 13 of Fig. 1). The final type environment that
has been proved valid is:

add : {int→ int→ int, {x : int | x ≥ 0}→ int→{r : int | r ≥ 0}} ,
sum : {int→ int, int→{r : int | r ≥ 0}} ,
main : {int→ int} .

The example above is oversimplified in that neither higher-order functions
nor local function definitions occur, and that intersection types are not used. We
present our method more formally in the next section.

4 Verification Method

This section describes our verification method in detail. As mentioned in Sect. 1,
our method consists of the two components typeChecker and typeSynthesizer,
which are described in Sects. 4.1 and 4.2, respectively.

10

4.1 typeChecker: Checking type candidate

The method typeChecker verifies whether

f1 : σ1, . . . , fk−1 : σk−1 |= fix(fk, λx̃k. tk) : τk

holds for each k ∈ {1, . . . , n}, given the program 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉, the
current type environment f1 : σ1, . . . , fn : σn, and the current refinement type
candidate τn of fn.

We reduce a type judgment Γ
?

|= t : τ to a safety checking problem by using
an extension of Sato et al.’s method [17]. For example, the type checking problem

f : ({x : int | x > 0}→ {r : int | r ≥ x})
?

|=
t : {y : int | y 6= 0}→ {s : int | s > y}

is reduced to the safety checking problem for the following program:

letf = λx. if x > 0 then let r = ∗int in assume (r ≥ x); r

else fail in

let y = let y′ = ∗int in assume (y′ 6= 0); y′ in

let s = t y in assert(s > y)

Here, the bodies of f and y are “universal” terms of types {x : int | x > 0} →
{r : int | r ≥ x} and {y : int | y 6= 0}, respectively. A universal term t of type τ
can simulate all the values of type τ , in the sense that, for any context C, term
t′ of type τ , and integer n, C[t′] −→∗ n implies C[t] −→∗ n, and C[t′] −→∗ fail
implies C[t] −→∗ fail.

As seen above, by using universal terms, we can reduce a type judgment
problem to a safety problem. In general, there exists a most general context
CΓ,τ with respect to a type environment Γ and a refinement type τ such that

CΓ,τ [t] 6−→∗ fail if and only if Γ |= t : τ

for any t such that ST (Γ) `ST t : ST (τ). Hence, we can check Γ |= t : τ by check-
ing the safety of term CΓ,τ [t]. If the term is safe, then t has type τ , and otherwise,
t does not have type τ for some f1, . . . , fn that have types Γ (f1), . . . , Γ (fn), re-
spectively.

Note that, even if the term CΓ,τ [t] is unsafe, we cannot conclude that t
does not have type τ in the original program P . The unsafety of CΓ,τ [t] just
indicates the untypability of t under the given type environment Γ , i.e., the type
environment is too weak to prove the typability of t.

Sato et al. [17] formalized the construction of CΓ,τ for refinement types with-
out intersection types. Below we extend their method to deal with refinement
intersection types. We define the most general context CΓ,τ with respect to Γ
and τ by using universal terms. The universal term synthesizer α∧ (−) is de-
fined in Fig. 5. The function α∧ (σ) (α (τ), resp.) synthesizes a universal term of

11

α ({x : int | P}) = let x = ∗int in assume (P); x

α ((x : σ)→ τ) = λx. if ∗bool ∨ β∧ (x : σ) then α (τ) else fail

α∧
(
{{x : int | P1} , . . . , {x : int | Pn}}int

)
= α ({x : int | P1 ∧ · · · ∧ Pn})

α∧
(
{(x : σ1)→ τ1, . . . , (x : σn)→ τn}κ1→κ2

)
=

wrap((x : σ1)→ τ1,wrap(· · ·,wrap((x : σn)→ τn, λx. fail) · · ·))
where wrap((x : σ)→ τ , v) =

λx. let f = v in

if ∗bool ∨β∧ (x : σ) then

try let r = f x in wrap(τ, r) with fail→ α (τ)

else f x

wrap({x : int | P}, v) = assume ([v/x]P); v

β (v : {x : int | P}) = [v/x]P

β (v : (x : σ)→ τ) = let x = α∧ (σ) in let r = v x in β (r : τ)

β∧
(
v : {τ1, . . . , τn}κ

)
= β (v : τ1) ∧ · · · ∧ β (v : τn)

Fig. 5. Synthesis of universal terms

type σ (τ , resp.). The function β∧ (v : σ) (β (v : τ), resp.) checks whether v has
type σ (τ , resp.). If β∧ (v : σ) returns false or aborts with fail, then v does not
have type σ. In the case of an intersection of function types, we use exceptions
and treat fail as an exception, which can be removed by CPS transformation.
The function wrap(τ, v), intuitively, forces v to have type τ by inserting assume
expressions into v. For integer types, wrap({x : int | P}, v) just assumes [v/x]P
and returns v. For functions types, wrap((x : σ)→ τ , v) returns a new function
that is an eta-expansion of v and in which assume expressions are inserted. In
the body of the new function, if the then-branch is taken (which indicates that
the argument x may have type σ), the return value must have type τ . If f x
is evaluated to some value r, then the new function returns wrap(τ, r), which
is forced to have type τ . If the evaluation of f x fails, then the new function
returns the universal term of τ . If the else-branch is taken (which indicates that
the argument x does not have type σ), since the return value of the new func-
tion need not have type τ , wrap((x : σ)→ τ , v) returns the original result f x.
Note that we can remove “∗bool ∨ ” in the definitions of α ((x : σ)→ τ) and
wrap((x : σ)→ τ , v), if we know that β∧ (x : σ) terminates. Especially, we can
remove “∗bool ∨ ” when σ is an integer type like the example above.

12

By using α∧ (−) and β (− : −), the most general context CΓ,τ can be defined
as follows:

C(f1:σ1,...,fn:σn),τ = let f1 = α∧ (σ1) in . . . let fn = α∧ (σn) in

let f = [] in assert(β (f : τ))

The following lemma states the correctness of the construction of CΓ,τ , which
can be proved in a manner similar to the original construction of Sato et al. [17]
for refinement types without intersections.

Lemma 1. Suppose ST (Γ) `ST t : ST (τ).

Γ |=P t : τ if and only if CΓ,τ [t] 6−→∗P fail.

The reduced problem can be checked by an existing safety checker (e.g.,
MoCHi [9, 18]) that satisfies the following properties:

– It can check the safety of a given program t, i.e., whether t 6−→∗P fail.
– It can generate a counterexample, i.e., a concrete reduction sequence of the

form t −→∗P fail, given an unsafe program.

We use counterexamples obtained by the checker to find type candidates of
top-level functions. Instead of using the counterexamples themselves, we use their
subsequence related to the target function. We call them modular counterexam-
ples. A modular counterexample π of top-level function f is a sequence of pairs
of labels and branching information {then, else}, i.e., π : (L × {then, else})∗
where L is the set of labels.

A modular counterexample of f is obtained from an ordinary counterexample
π as follows. We write L(t) for the set of the labels occurred in t, and write Lf
for L(t) where (f x̃ = t) ∈ P . Suppose the given counterexample π is of the
following form

CΓ,τ [t] −→∗ E1[if `1 v1 then t12 else t13]

−→∗ E2[if `2 v2 then t22 else t23]

...

−→∗ En[if `n vn then tn2 else tn3]

−→∗ fail.

Then, a modular counterexample of function f is

(`j1 , bj1) . . . (`jk , bjk) where 1 ≤ j1 < · · · < jk ≤ n,
{j1, . . . , jk} = {j | `j ∈ Lf} , and

bj =

{
then vj 6= 0

else vj = 0
for each j ∈ {j1, . . . , jk}.

13

Example 3. Recall the program Psum in Example 1. Suppose that τ = int→
{r : int | r = 0} is given as a type candidate of sum and the following type envi-
ronment is given:

Γ = add : {int→ int→ int} .

Then, the most general context CΓ,τ is

CΓ,τ = let add = λx. λy. ∗int in

let x = ∗int in let r = []x in assert(r = 0).

Since sum does not have type τ under the type environment, we have the following
counterexample for some m 6= 0:

CΓ,τ [tsum]

−→∗ let r = t′sum 1 in assert(r = 0)

−→∗ let r = if `2 1 ≤ 0 then 0 else tadd 1 (t′sum (1− 1)) in assert(r = 0)

−→∗ let r = tadd 1 (if `2 0 ≤ 0 then 0 else . . .) in assert(r = 0)

−→∗ let r = tadd 1 0 in assert(r = 0)

−→∗ let r = m in assert(r = 0)

−→∗ fail

where

tsum = P (sum) = fix(sum, λx. if `2 x ≤ 0 then 0 else add x (sum (x− 1)))

t′sum = [tadd/add]tsum

tadd = λx. λy. ∗int .

There are two branches labeled with `2, which occurs in the body of sum. The
else-branch is taken on the first visit of `2, and the then-branch is taken on the
next visit. We then obtain the following modular counterexample:

(sum, (`2, else)(`2, then)).

ut

4.2 typeSynthesizer: Synthesizing new refinement types

The function typeSynthesizer finds type candidates by using the modular
counterexamples found so far. It first generates a program slice of the origi-
nal program corresponding to modular counterexamples, and infers a refinement
type of the program slice. The inferred refinement type can be used as a type
candidate of the original program.

Given a set of modular counterexamples

Π ⊆ P (dom(P)× (L× {then, else})∗) ,

14

we generate a program slice of P (fi) that corresponds to Π, for which we write
DP,Π,fi . We first construct a computation tree whose path corresponds to a
execution trace that follows the modular counterexamples. The corresponding
program DP,Π,fi is obtained by (i) making a copy of each function for each call
in the computation tree, and (ii) for each copy, removing the branches not taken
in the corresponding execution trace.

Example 4. Recall the program Psum in Example 3. Suppose the target func-
tion and the type are main and int→ int, and the following set Π of modular
counterexamples is given:

{ (add, (`1, then)),

(add, (`1, else)(`1, then)),

(sum, (`2, else)(`2, else)(`2, then)),

(main, (`3, else)) }.

Then the program DPsum,Π,main corresponding to the modular counterexamples
is

〈 add1 x y = if y ≤ 0 then x else assume (false),

add′2 x y = if y ≤ 0 then x else assume (false),

add2 x y = if y ≤ 0 then assume (false) else 1 + add′2 x (y − 1),

add x y = add1 x y 2 add2 x y,

sum′′1 x = if x ≤ 0 then 0 else assume (false),

sum′1 x = if x ≤ 0 then assume (false) else add x (sum′′1 (x− 1)),

sum1 x = if x ≤ 0 then assume (false) else add x (sum′1 (x− 1)),

sum x = sum1 x,

main1 n = if 0 ≤ sum n 0 then assume (false) else fail,

main n = main1 n 〉.

A function corresponding to each modular counterexample is generated: add1
from (add, (`1, then)), add2 from (add, (`1, else)(`1, then)), sum1 from (sum,
(`2, else)(`2, else)(`2, then)), and main1 from (main, (`3, else)). The function
typeSynthesizer then infers a refinement type of C∅,int→int[DPsum,Π,main], and
obtains the following types:

add : {{x : int | x ≥ 0}→ int→{r : int | r ≥ 0}} ,
sum : {int→{r : int | r ≥ 0}} .

We use the above types as type candidates of add and sum. ut

If the constructed program is not typable, so is the original program. Then,
the function typeSynthesizer answers “There are no candidates” and our
method returns “no”. In this case, we can obtain an untypable execution trace,
and output the trace as an ordinary counterexample.

15

The concrete definition of typeSynthesizer is shown in Appendix A. The
construction is similar to that of straightline programs used in MoCHi [9].

The following lemma guarantees that the modular counterexample π is indeed
a counterexample in that a slice of P (fi) containing a path corresponding to π
is indeed (semantically) untypable.

Lemma 2. Let P be a program, and π be a modular counterexample against
Γ |= P (fi) : τi. If π ∈ Π and DP,Π,fi is the slice of P (fi) corresponding to Π,
then Γ 6|= DP,Π,fi : τi.

4.3 Properties of the Method

We now discuss properties of our method. The method is sound (under the
assumption that the underlying verifier is sound), in the sense that, if the method
returns “yes” (“no”, resp.), then the given program has (does not have, resp.)
the given type. This is an easy consequence of the soundness of typeChecker,
i.e., the soundness of the reduction from refinement type checking to assertion
checking.

Our method also satisfies a progress property, in that the set of modular
counterexamples monotonically increases until the method terminates. More pre-
cisely, in the overall procedure in Fig. 1, either Γ or Π strictly increases upon
each recursive call of validateTE. We can prove the progress as follows. Sup-
pose that validateTE is called with a non-empty candidate type environment
Γcand, that Γ does not change in the for-loop, and that τ ∈ Γ (fn) does not
hold on line 13. Let i be the least i such that Γcand(fi) 6= ∅, and there exists
τ ′ ∈ Γcand(fi) such that Γ 6|= P (fi) : τ ′; note that there always exists such i by
the assumption that τ ∈ Γ (fn) does not hold on line 13. Since Γcand(fi) 6= ∅,
typeChecker(Γ, P (fi), τ

′) returns NG(π) for some π. We show π 6∈ Π by contra-
diction. Suppose π ∈ Π. By Lemma 2, Γ 6|= DP,Π,fi : τ ′, where DP,Π,fi is the
slice of P (fi) corresponding to Π. This contradicts τ ′ ∈ Γcand(fi), since in the
previous call of validateTE, Γcand has been constructed from Π (so, τ ′ has been
chosen so that Γ |= DP,Π,fi : τ ′ holds). Thus, we have π 6∈ Π, which implies
that Π strictly increases on line 12.

With a certain assumption on the underlying reachability checker used in
typeChecker, we can also guarantee the completeness for finding a counterex-

ample. Suppose that, for the problem CΓ,τ [P (fi)]
?

−→∗P fail obtained from a type

checking problem Γ
?

|= P (fi) : τ , if there is a counterexample, the reachability
checker returns the one corresponding to the least (with respect to a certain total
order on modular counterexamples) modular counterexample that does not be-
long to Π (if there is any). Then, by the progress property, every counterexample
is eventually enumerated, so that a counterexample to the original verification
problem is eventually found if there is any.

In order to guarantee the relative completeness for verification in the sense
of [24] (i.e., if |= P : τ , then the method is eventually able to prove it, modulo
a certain assumption on the underlying logic), we need to extend the method

16

program LOC #module MoCHi [sec] modular [sec] #typeChecker

sum add 3 3 0.57 1.64 11

harmonic 18 4 0.88 5.48 17

fold div 19 4 0.86 5.71 18

risers 21 3 8.93 2.66 4

various 23 3 TIMEOUT 0.04 5

colwheel 69 5 TIMEOUT 25.06 7

queen 45 4 5.69 9.70 8

queen simple 20 2 TIMEOUT 14.86 7

soli 93 5 TIMEOUT 17.84 8

spir 75 11 5.06 48.94 21

doctor 568 12 TIMEOUT 543.93 45

various-e 23 3 0.34 2.24 5

queen simple-e 19 2 0.74 4.02 5

Table 1. Results of experiments

to automatically infer implicit parameters (as in [24]) for each function module,
which is left for future work.

5 Experiments

We have implemented an automated verification tool for a subset of OCaml,
based on the proposed method. We use MoCHi [9] as the backend safety checker
used in typeChecker. We have tested our tool for programs taken from the
benchmark for MoCHi and Caml Examples [27]. We have conducted the ex-
periments on a machine with Intel Core i7-3930K (3.20 GHz, 16 GB of mem-
ory), with timeout of 600 seconds. All the programs are available on the web
http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/modular/.

Table 1 summarizes the experimental results. The column “program” shows
the names of the programs. The column “LOC” shows the number of lines of
code excluding comments and blank lines. The column “#module” shows the
number of modules, i.e., top-level functions. The columns “MoCHi” and “mod-
ular” show the running time in seconds of the original MoCHi and our new
verifier respectively. The column “#typeChecker” shows the number of calls to
typeChecker.

All the benchmark programs are safe except various-e and queen simple-e,
i.e., they are free from assertion failures, pattern matching failures, uncaught
exceptions, and array bound errors. We explain each benchmark program below.
The program sum add is Psum in Example 1. The programs harmonic, fold div,
and risers have been taken from the benchmark of MoCHi [18]. We have
chosen the programs which are no less than 18 lines and have no less than 3
modules. The program various is a composition of small programs taken from
the benchmark of MoCHi, namely sum, mult, and mc91.

17

The other programs colwheel–doctor have been taken from Caml Exam-
ples [27]. The program colwheel displays a color chart, which uses exceptions
and variants defined in Graphics module. The program queen solves the eight
queen problem, which uses arrays. We encode arrays as functions, and insert
assertions on array bounds. We insert assertions that the index used in an op-
eration on array is no less than 0. The program queen simple is a simplified
version of queen, but the assertions on array bounds are more strict than queen.
We also insert assertions that the index used in an operation is less than the
size of the array. The program soli solves a Peg solitaire game, which also uses
exceptions, variants, and arrays. The program spir shows an animation of a
colorful spiral, which uses an array. The program doctor is a chatterbot, which
uses exceptions. A program of name “xxx-e” is a buggy version of the program
“xxx”.

As seen in Table 1, our new tool successfully verifies all the benchmark
programs, whereas MoCHi failed to verify various, colwheel, queen simple,
soli, and doctor in 600 seconds. For the other programs (that MoCHi could
also verify) except risers, our new tool is actually slower than MoCHi. For
those programs, typeChecker was called many times before appropriate refine-
ment types were discovered. There is an obvious trade-off between the modular
and whole program verification; in reasoning about each function, the latter can
use more precise information about the other functions. We expect that the
advantage of the modular verification is clearer for larger programs.

6 Related Work

As mentioned in Sect. 1, most of the fully-automated verification methods for
higher-order functional programs [9, 15, 18, 10, 13, 14, 26] are whole program anal-
yses. The exceptions are those based on refinement type inference [21, 30, 31],
which have similarities to our method in that they consist of two components:
one to infer candidate refinement types of functions, and the other to check the
validity of the candidate refinement types; the latter can be carried out in a
compositional manner, based on a refinement type system. Each component is,
however, significantly different from ours. For the first component, Terauchi [21]
applies the technique of refinement type inference [23] to the recursion-free pro-
grams obtained by finitely unfolding recursive functions, whereas Zhu et al. [30]
apply a machine learning technique. Our typeSynthesizer component is closer
to Terauchi’s one [21], but only looks at a part of the program relevant to mod-
ular counterexamples found so far. It would be interesting to integrate Zhu et
al.’s machine learning technique [30, 31] into our typeSynthesizer component,
which is left for future work. For the second component, both Terauchi [21] and
Zhu et al. [30] use a specific set of syntactic typing rules for refinement types,
which is not complete with respect to the semantic refinement type judgment.
Our typeChecker component reduces the semantic type judgment to a reacha-
bility checking problem and delegates the latter to a software model checker [9,
24], so that the component is relatively complete in the sense of [24]. As a re-

18

sult, our modular verification tool is as powerful as MoCHi, and can generate
a concrete error path as a counterexample if a given program does not sat-
isfy a specification, unlike Terauchi and Zhu et al.’s methods [21, 30]. For the
typeChecker component, we have extended Sato et al.’s technique [17] to deal
with intersection types. Voirol et al. [26] and Unno et al. [23] reduce the veri-
fication of higher-order programs to the satisfiability checking of quantifier-free
formulas and Horn clauses, respectively, and then use constraint solvers; thus,
the scalability of the methods depends on those of the underlying solvers. We
are not aware of a good modular method for checking the satisfiability.

In contrast with fully-automated verification methods, semi-automated veri-
fication methods for functional programs [28, 16, 29, 11, 6] usually work in a com-
positional manner. Those methods, however, rely on annotations of invariants
(or predicates used in invariants [16]). Among them, liquid types [16, 25] require
less annotations. Since the liquid types also rely on syntactic refinement typing
rules, the comment above on Zhu et al. and Terauchi’s methods [21, 30] applies.

For finite state systems, a lot of techniques have been proposed for com-
positional verification [22, 2, 8, 3, 1, 5, 7, 4]. Some of them infer the interfaces of
components based on lazy parallel composition [22, 3] and assume-guarantee rea-
soning [5, 7]. It is not clear how to extend those methods to deal with higher-order
functional programs.

7 Conclusion

We have proposed an automated modular verification method for higher-order
functional programs. We have introduced the notion of modular counterexamples
to infer candidate refinement intersection types of each function module, and
extended Sato et al.’s method [17] to check the validity of the inferred candidate
types in a modular manner. We have implemented the proposed method and
confirmed its effectiveness through experiments.

Further optimizations are required to make our verification tool more scalable
for larger programs. Future work also includes a relatively complete modular
verification method (recall the discussion at the end of Sect. 4.3), and extensions
of the modular method for proving liveness properties.

Acknowledgment

We would like to thank anonymous referees for useful comments. This work was
supported by JSPS KAKENHI Grant Number JP15H05706.

References

1. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model check-
ing. In: Proceedings of Revised Lectures from the International Symposium on
Compositionality: The Significant Difference (COMPOS ’97). pp. 81–102 (1998)

19

2. Burch, J., Clarke, E.M., Long, D.: Symbolic model checking with partitioned transi-
tion relations. In: Proceedings of the IFIP TC10/WG 10.5 International Conference
on Very Large Scale Integration (VLSI 1991). pp. 49–58 (1991)

3. Campos, S.V.A.: A quantitative approach to the formal verification of real-time
systems. Ph.D. thesis, Carnegie Mellon University (1996)

4. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular
systems and specifications. Innovations in Systems and Software Engineering 7(2),
131–139 (2011)

5. Cobleigh, J.M., Giannakopoulou, D., Psreanu, C.S.: Learning assumptions for com-
positional verification. In: Proceedings of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2003). pp.
331–346 (2003)

6. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: Proceedings
of the 22nd European Conference on Programming Languages and Systems (ESOP
2013). pp. 125–128 (2013)

7. Gheorghiu Bobaru, M., Psreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Proceedings of the 20th In-
ternational Conference on Computer Aided Verification (CAV 2008). pp. 135–148
(2008)

8. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

9. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2011). pp. 222–233
(2011)

10. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of the 37th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 2010). pp. 495–508 (2010)

11. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Proceedings of the 17th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR 2010). pp. 348–370 (2010)

12. Matsumoto, Y., Kobayashi, N., Unno, H.: Automata-based abstraction for auto-
mated verification of higher-order tree-processing programs. In: Proceedings of the
13th Asian Symposium on Programming Languages and Systems (APLAS 2015).
pp. 295–312 (2015)

13. Nguyen, P.C., Horn, D.V.: Relatively complete counterexamples for higher-order
programs. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2015). pp. 446–456. ACM
(2015)

14. Nguyen, P.C., Tobin-Hochstadt, S., Horn, D.V.: Soft contract verification. In: Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2014). pp. 139–152 (2014)

15. Ong, C.H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Proceedings of the 38th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2011). pp. 587–598 (2011)

16. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2008). pp. 159–169 (2008)

20

17. Sato, R., Asada, K., Kobayashi, N.: Refinement type checking via assertion check-
ing. Journal of Information Processing 23(6), 827–834 (2015)

18. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of the ACM SIGPLAN 2013 Workshop
on Partial Evaluation and Program Manipulation (PEPM 2013). pp. 53–62. ACM
Press (2013)

19. Swamy, N., Kohlweiss, M., Zinzindohoue, J.K., Zanella-Béguelin, S., Hricu, C.,
Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K., Fournet,
C., Strub, P.Y., Swamy, N., Hricu, C., Keller, C., Rastogi, A., Delignat-Lavaud,
A., Forest, S., Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindo-
houe, J.K., Zanella-Béguelin, S.: Dependent types and multi-monadic effects in
F*. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2016). pp. 256–270 (2016)

20. Terao, T., Tsukada, T., Kobayashi, N.: Higher-order model checking in direct style.
In: Proceedings of the 14th Asian Symposium on Programming Languages and
Systems (APLAS 2016). pp. 295–313 (2016)

21. Terauchi, T.: Dependent types from counterexamples. In: Proceedings of the 37th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 2010). pp. 119–130 (2010)

22. Touati, H., Savoj, H., Lin, B., Brayton, R., Sangiovanni-Vincentelli, A.: Implicit
state enumeration of finite state machines using BDD’s. In: 1990 IEEE Interna-
tional Conference on Computer-Aided Design (ICCAD-90). pp. 130–133 (1990)

23. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP 2009). pp. 277–288 (2009)

24. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2013). pp. 75–86 (2013)

25. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for haskell. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming. pp. 269–282 (2014)

26. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Proceedings of the 6th ACM SIGPLAN Symposium
on Scala (Scala 2015). pp. 18–29 (2015)

27. Weis, P.: Caml examples (2001), http://caml.inria.fr/pub/old_caml_site/

Examples/

28. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1999). pp. 214–227 (1999)

29. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference
for ML. In: Proceedings of the 14th Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI 2013). pp. 295–314 (2013)

30. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2015). pp. 400–411 (2015)

31. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, (PLDI 2016). pp. 491–507 (2016)

21

f /∈ Ftop (f x̃ = e1 2
` e2) ∈ D

(D, f ṽ) −→ (D, [ṽ/x̃](e1 2
` e2))

(
D, e1 2

` e2
)
−→ (D, eb)

(D,assume (true) ; e) −→ (D, e)

(D, let x = ∗int in a) −→ (D, [n/x]a)

Fig. 6. Operational semantics of the intermediate language

A Definition of typeSynthesizer

This section gives the definition of the component typeSynthesizer. For the
simplicity, we use the intermediate language defined as follows:

D ::=
{
f1 x̃1 = e10 2

` e11, . . . , fm x̃m = em0 2 em1

}
e ::= a | assume (v) ; e | let x = ∗int in e

a ::= 〈〉 | x ṽ | f ṽ | fail

v ::= c | x ṽ | f ṽ | op(ṽ).

The semantics of the intermediate language is given in Fig. 6. When transforming
the original program, we keep information on the function definition dependen-
cies as relation R ⊆ dom(P)×F where F denote the set of functions (including
local functions). R(f, g) means that f is a top-level function and function g is
defined in the body of f in the original program. We write Ftop for the top-level
function of the original program P , i.e., dom(P). We assume that the translated
program contains a distinguished function symbol main ∈ {f1, . . . , fn} whose
simple type is int→ int, and main does not use its argument. The transforma-
tion from the target language to the intermediate language can be defined as a
combination of CPS transformation and λ-lifting.

The operational semantics is given by Fig. 6. This semantics is used just for
collecting information on which branch is taken, and which function is called in
each application. The reduction is labeled with

ρ ∈ {ε} ∪ {(br, b) | b ∈ {then, else}} ∪ {(sp, π) | π : (L× {then, else})∗}

for recording which branch has been taken and which modular counterexample
has been used. The label (br, then) ((br, else), resp.) represents that the then-
branch (else-branch, resp.) is taken. The label (sp, π) represents that the modu-
lar counterexample π is used for the top-level function f on the application of f .
The evaluation ignores base values, as assume (v) ; e and let x = ∗int in e are
reduced to e. In the application of top-level function f , the function is duplicated
by the function Spawn(D,R, f, π) with respect to modular counterexample π.

22

f /∈ Ftop (f x̃ = e1 2
l e2) ∈ D

(D,B, f ṽ)
ε−→R,Π (D,B, [ṽ/x̃](e1 2

l e2))

f ∈ Ftop (f x̃ = t) ∈ D |x̃| = |ṽ|
(D′, π′, f ′) = Spawn(D,R, f, π) (f, π) ∈ Π

(D,B, f ṽ)
(sp,π)−→ R,Π (D′ ∪D, {π′} ∪B, f ′ṽ)

π = (`1, b1) . . . (`i, bi) . . . (`n, bn) `i = ` `j 6= ` for j ∈ {1, . . . , i− 1}
π′ = (`1, b1) . . . (`i−1, bi−1)(`i+1, bi+1) . . . (`n, bn)(
D, {π}]B, e1 2l e2

) (br,b)−→ R,Π (D, {π′}]B, eb)

(D,B,assume (v) ; e)
ε−→R,Π (D,B, e)

(D,B, let x = ∗int in a)
ε−→R,Π (D,B, e)

Spawn(D,R, f, π)
def
= (D′, π′, f ′)

where {g1, . . . , gn} = {g | R(f, g)}

{lf} =
{
l
∣∣∣ (f x̃ = e1 2

` e2) ∈ D
}

{li} =
{
l
∣∣∣ (gi x̃ = e1 2

` e2) ∈ D
}

for each i ∈ {1, . . . , n}

f ′, g′1, . . . , g
′
n, l
′
f , l
′
1, . . . , l

′
n are fresh

σ = [f ′/f, g′0/g0, . . . , g
′
n/gn]

D′ =
{
f x̃ = σe1 2

` σe2

∣∣∣ (f x̃ = e1 2
` e2) ∈ D

}
∪
{
gi x̃ = σe1 2

l′i σe2

∣∣∣ i ∈ {1, . . . , n} , (gi x̃ = e1 2 e2) ∈ D
}

π = (lj1 , b1) . . . (ljk , bk)

π′ = (l′j1 , b1) . . . (l′jk , bk)

Fig. 7. Operational semantics of the intermediate language with respect to modular
counterexamples

23

We write (D,B, t)
ρ1...ρn
=⇒ R,Π (D′, B′, t′) if

(D,B, t) (
ε−→R,Π)∗

ρ1−→R,Π (
ε−→R,Π)∗ · · ·

(
ε−→R,Π)∗

ρn−→R,Π (
ε−→R,Π)∗(D′, B′, t′).

To construct a program corresponding to modular counterexamples, we first
extract the set of sequences of labels, which can be viewed as a set of ordi-
nary counterexamples. We define the set B of sequence of labels from reduction
sequences according to Π by

B =
{
ρ̃
∣∣∣ (D, ∅, main 〈〉) ρ̃

=⇒R,Π (D′, B′, t′) for some D′, B′, and t′
}
.

We then construct a program from B by using function Construct(−,−),
which is defined in Fig. 8. In the figure, tρ1...ρn is a term satisfying

(D, ∅, main 〈〉) ρ1...ρn=⇒ R,Π (D′, B′, tρ1...ρn)

for some D′ and B′. We assign an index to each element of B, and write I(ρ̃)

for the index of ρ̃. We assume I(ρ̃) ≤ I(ρ̃′) if ρ̃ is a prefix of ρ̃′. We write ρ̃j for
the element of B whose index is j.

Finally, by using the refinement (intersection) type inference [23, 21], we infer
a refinement type of the constructed program in the context C∅,τ where τ is the
target type, and return the inferred types as type candidates.

24

Construct({f1 x̃1 = e10 2 e11, . . . , fm x̃m = em0 2 em1} ,B)
def
=

{f (ρ̃(br,k))
i x̃i = [eik]ρ̃(br,k)ρ′ | i ∈ {1, . . . ,m}, j ∈ {1, . . . , |B|}, fi /∈ F,
ρ̃(br, k)ρ′ ∈ B, tρ̃(br,k) is an application of fi}

∪ {f (ρ̃)
i x̃i = 〈〉 | i ∈ {1, . . . ,m}, j ∈ {1, . . . , |B|}, fi /∈ F,
tρ̃ is not an application of fi}

∪ {f (ρ̃)
i x̃i = f

(ρ̃(sp,Π1))
i x̃i 2 · · · 2 f

(ρ̃(sp,Πk))
i x̃i | i ∈ {1, . . . ,m}, j ∈ {1, . . . , |B|},

fi ∈ F, {c1, . . . , ck} = {c | (fi, c) ∈ Π}, tρ̃ is an application of fi}

∪ {f (ρ̃)
i x̃i = 〈〉 | i ∈ {1, . . . ,m}, j ∈ {1, . . . , |B|},
fi ∈ F, {c1, . . . , ck} = {c | (fi, c) ∈ Π}, tρ̃ is not an application of fi}

∪
{
main〈〉 = main

(ε)〈〉
}

[assume (v) a]j = assume (v) [a]j

[let x = op(ṽ) in a]j = let x = op(ṽ) in [a]j

[〈〉]j = 〈〉
[fail]j = fail

[x]j = x

[x v1 · · · vk]j =]j(x) v1
♦j+1 · · · vk♦j+1 (k ≥ 1)

[f v1 · · · vk]j = f (ρ̃j) v1
♦j+1 · · · vk♦j+1

c♦j = c

x♦j = x (if x is a variable of a base type)

(x ṽ)♦j = 〈λỹ.〈〉, . . . , λỹ.〈〉︸ ︷︷ ︸
j−1

,]j(x)(ṽ♦j), . . . ,]|B|(x)(ṽ♦j)〉

(if x is a function variable)

(f ṽ)♦j = 〈λỹ.〈〉, . . . , λỹ.〈〉︸ ︷︷ ︸
j−1

, f (ρj)(ṽ♦j), . . . , f (ρ|B|)(ṽ♦j)〉

Fig. 8. The definition of Construct(D,B)

25

B Proof of Lemma 1

Definition 1 (Simulation). A simulation is a family of relations {Rκ}κ such
that Rκ is a relation between terms of simple type κ, and if t1 Rκ t2, then either
t2 −→∗P fail or the following hold:

– If t1 −→∗P n, then t2 −→∗P n.
– If κ is of the form κ1 → κ2 and t1 −→∗P fix(f, λx. t′1), then there exists t′2

such that
• t2 −→∗P fix(f, λx. t′2) and
• [v1/x][fix(f, λx. t′1)/f]t′1 Rκ2 [v2/x][fix(f, λx. t′2)/f]t′2 for any values v1

and v2 such that v1 Rκ1 v2.
– If t1 −→∗P fail, then t2 −→∗P fail.

We define {.κ}κ as the greatest simulation. For open terms t1 and t2, we also
write t1 .κ t2 if, for some simple type environment Γ = x1 : κ1, . . . , xn : κn,

– t1 and t2 have simple type κ under Γ , and
– [v1/x1, . . . , vn/xn]t1 .κ [v1/x1, . . . , vn/xn]t2 for any v1, . . . , vn such that vi

has type κi for each i.

Definition 2 (Size of type). The size size(τ) (size∧(σ), resp.) of type τ (σ,
resp.) is defined as follows:

size({x : int | φ}) = 1

size((x : σ)→ τ) = 1 + size∧(σ) + size(τ)

size∧({τ1, . . . , τn}κ) = 1 + size(τ1) + · · ·+ size(τn).

Lemma 3. Suppose t1 .κ t2.

– If |=P t2 : τ , then |=P t1 : τ .
– If |=P

∧ t2 : σ, then |=P
∧ t1 : σ.

Proof. By induction on size(τ) and size(σ). Suppose t1 .κ t2 and |=P t2 : τ . If
t1 −→∗P fail, by the assumption t1 .κ t2, we have t2 −→∗P fail, which contradicts
|=P t2 : τ . We show |=P

v v : τ for any v such that t1 −→∗P v.
Case v = n and |=P

v v : τ : By the assumption t1 .κ t2, we have t2 −→∗P n
and |=P n : τ , as required.

Case v = fix(f, λx. t′1) and |=P
v v : (x : σ1)→ τ2: We have κ = κ1 → κ2

for some κ1 and κ2. By the assumption t1 .κ t2, there exists t′2 such that
t2 −→∗P fix(f, λx. t′2) and [v1/x][fix(f, λx. t′1)/f]t′1 .κ2 [v2/x][fix(f, λx. t′2)/f]t′2
for any values v1 and v2 such that v1 .κ1 v2. By the assumption |=P t2 : τ , we
have |=P [v2/x][fix(f, λx. t′2)/f]t′2 : [v2/x]τ2 for any v2 such that |=P

v,∧ v2 : σ1.

Let v′ be a value such that |=P
v,∧ v

′ : σ1. Since v′ .κ1 v′, we get

|=P [v′/x][fix(f, λx. t′2)/f]t′2 : [v′/x]τ2

⇒ |=P [v′/x][fix(f, λx. t′1)/f]t′1 : [v′/x]τ2 (by I.H.)

⇒ |=P v v′ : [v′/x]τ2 (since v v′ �P [v′/x][fix(f, λx. t′1)/f]t′1).

Thus, we obtain |=P
v v : τ .

Case |=P
v,∧ v : σ: By I.H.

26

Lemma 4. If v1 .κ v2, then [v2/x]τ = [v1/x]τ .

Proof. If κ = int, then we have v1 = v2. Therefore, we get [v2/x]τ = [v1/x]τ .
If κ is a function type, since a variable of a function type cannot occur in τ , we
have [v2/x]τ = τ = [v1/x]τ .

Lemma 5. If t1 .κ1→κ2 t2 and t′1 .κ1 t′2, then t1 t
′
1 .κ2 t2 t

′
2.

Proof. Suppose t1 t
′
1 −→∗P v. We have

– t1 −→∗P fix(f, λx. t3),
– t′1 −→∗P v1, and
– [v1/x][fix(f, λx. t3)/f]t3 −→∗P v

for some t3 and v1. By the assumption that t′1 .κ1 t′2, we have v1 .κ1 v2 for
some v2 such that t′2 −→∗P v2. Therefore, by the assumption that t1 .κ1→κ2 t2,
we get [v1/x][fix(f, λx. t3)/f]t3 .κ2 [v2/x][fix(f, λx. t4)/f]t4 for some t4 such
that t2 −→∗P fix(f, λx. t4).

Lemma 6. If v .κ α∧ (σ), then there exists v′ such that α∧ (σ) −→∗P v′ and
v .κ v′.

Proof. By case analysis on σ.

Lemma 7. Suppose FV (τ) = {x} and [v/x]τ is a valid type, i.e., predicates
in [v/x]τ are well-typed and have type int. Then, [v/x]α (τ) = α ([v/x]τ), and
[v/x]β (v′ : τ) = β (v′ : [v/x]τ).

Proof. By induction on the size of ST (τ).

Lemma 8. For any type τ and σ, the following holds.

1. |=P α (τ) : τ .
2. |=P

∧ α∧ (σ) : σ.
3. If |=P

v v : τ , then β (v : τ) �P true.
4. If |=P

v,∧ v : σ, then β∧ (v : σ) �P true.

Proof. By induction on size(τ) and size∧(σ).
Case τ = {x : int | φ}: By the definition of α (−), we have

α (τ) = let x = ∗int in assume (φ) ; x.

We show that |=P assume ([n/x]φ); n : τ for any integer n. Since φ does not
include applications and ∗int, there exists a unique v such that [n/x]φ �P v.
If v = true, since |=P

p [n/x]φ holds, we obtain |=P
v n : τ . If v 6= true, since

assume ([n/x]φ) 6−→∗P v′ for any v′, we have |=P assume ([n/x]φ); n : τ as
required. Suppose |=P

v n′ : τ for some integer n′. β (n′ : τ) = [n′/x]φ �P true
follows from the definition of |=P

v n′ : τ .
Case τ = (x : σ1)→ τ2: By the definition of α (−), we have

α (τ) = λx. if ∗ ∨ β (x : σ1) then α (τ2)

27

We show that |=P α (τ) v : [v/x]τ2 for any v such that |=P
v,∧ v : σ1. We

get β (v : σ1) �P true by I.H. Therefore, we have α (τ) v �P α ([v/x]τ2) by
Lemma 7. Since |=P α ([v/x]τ2) : [v/x]τ2 by I.H., we get |=P α (τ) v : [v/x]τ2
as required. We next show that β (v : τ) �P true for any v such that |=P

v v : τ .
By the definition of β(−), we have

β (v : τ) = let x = α (σ1) in let r = v x in β (r : τ2).

Suppose α (σ1) −→∗P v′, v v′ −→∗P v′′, and

β (v : τ) −→∗P let r = v v′ in [v′/x]β (r : τ2) −→∗P [v′/x]β (v′′ : τ2).

Since |=P
∧ α (σ1) : σ1 by I.H., we have |=P

v,∧ v
′ : σ1 and |=P

v v′′ : [v′/x]τ2. By
I.H., we get β (v′′ : [v′/x]τ2) �P true, and hence, [v′/x]β (v′′ : τ2) �P true by
Lemma 7.

Case σ = ∅κ: Trivial.
Case σ = {τ1, . . . , τn}int: By I.H.
Case σ = {τ1, . . . , τn}κ1→κ2

: Follows from the following fact: For any v, τ ::κ,

and σ′ = {τ ′1, . . . , τ ′n}κ, if |=P
v,∧ v : σ′, then |=P

∧ wrap(τ, v) : {τ, τ ′1, . . . , τ ′n}κ. We
show the fact by induction on size(σ) under the restriction size(σ′) < size(σ).

Case τ = {x : int | φ}: Suppose wrap(τ, v) = assume ([v/x]φ); v −→∗P v′.
Since we have v′ = v and |=P

v v : {x : int | φ}, we obtain |=P
v v′ : {{x : int | φ} , τ ′1, . . . , τ ′n}.

Case τ = (x : σ0)→τ0: We first show |=P wrap(τ, v) : τ , i.e., |=P wrap(τ, v) v′ :
[v′/x]τ0 for any v′ such that |=P

v,∧ v′ : σ0. Let t0 be wrap(τ, v) v′. Suppose
t0 −→∗P v′′. By I.H. of the lemma, we have β∧ (v′ : σ0) �P true. If f x fails, i.e.,
the reduction is of the form

t0 −→∗P E[let r = v v′ in wrap(τ0, r)] −→∗P E[fail],

then α ([v′/x]τ0) �P v′′. Therefore, we get |=P
v v′′ : [v′/x]τ0 by I.H. of the

lemma. If f x does not fail, i.e., t0 −→∗P wrap(τ0, vr) for some vr, then we obtain
|=P

v v′′ : [v′/x]τ0 by I.H. Suppose σ′ = {(x1 : σ1)→ τ ′1, . . . , (xn : σn)→ τ ′n} We
next show |=P

∧ wrap(τ, v) : σ′, i.e., |=P wrap(τ, v) : (xi : σi)→ τ ′i for each
i ∈ {1, . . . , n}. Suppose |=P

v,∧ v′ : σi and wrap(τ, v) v′ −→∗P v′′. We show

|=P
v v′′ : [v′/xi]τ

′
i . If the then-branch is taken, since v v′ (i.e., f x) does not

fail, then the reduction is of the form wrap(τ, v) v′ −→∗P wrap(v′′, [v′/xi]τ
′
i).

Therefore, we obtain |=P
v v′′ : [v′/xi]τ

′
i by I.H. The case of the else-branch is

straightforward.

Lemma 9. Let i be an integer and v be a value of simple type ST (τ) = ST (σ).

– Suppose t .ST(τ ′) α (τ ′) for any t and τ ′ such that |=P t : τ ′ and size(τ ′) <
i. If 6|=P

v v : τ and size(τ) = i, then β (v : τ) −→∗P false or β (v : τ) −→∗P
fail.

– Suppose t .ST(σ′) α∧ (σ′) for any t and σ′ such that |=P
∧ t : σ′ and

size(σ′) < i. If 6|=P
v,∧ v : σ and size(σ) = i, then β∧ (v : σ) −→∗P false

or β∧ (v : σ) −→∗P fail.

28

Proof. By induction on i.
Case τ = {x : int | φ}: We have v = n for some n. By the assumption that

6|=P
v v : τ , [v/x]φ −→∗P false.
Case τ = (x : σ1)→ τ2: We have v = fix(f, λx. t) for some t. Since 6|=P

v v :
(x : σ1)→ τ2, there exists v′ such that |=P

v,∧ v′ : σ1 and 6|=P v v′ : [v′/x]τ2.

By the assumption and size(σ1) < size(τ) = i, we have v′ .ST(σ1) α∧ (σ1).
Hence, we get v v′ .ST(τ2) v α∧ (σ1) by Lemma 5. Therefore, by Lemma 3, we
get 6|=P v α∧ (σ1) : [v′/x]τ2, i.e., there exists v1 and a such that α∧ (σ1) −→∗P v1,
v v1 −→∗P a, and 6|=P a : [v′/x]τ2. If a = fail, then we obtain β (v : τ) −→∗P fail.
If a = v2 for some v2, since

β (v : τ) −→∗P let r = v v1 in β (r : [v′/x]τ2) −→∗P β (v2 : [v′/x]τ2)

we get β (v : τ) −→∗P false or β (v : τ) −→∗P fail by I.H.
Case σ = {τ1, . . . , τn}: By I.H.

Lemma 10. The following holds.

– If |=P t : τ , then t .ST(τ) α (τ).
– If |=P

∧ t : σ, then t .ST(σ) α∧ (σ).

Proof. By induction on size(τ) and size(σ).
Case τ = {x : int | φ} and t −→∗P fail: Contradicts the assumption.
Case τ = {x : int | φ} and t −→∗P n: Since |=P

p [n/x]φ and

α (τ) = let x = ∗int in assume (φ); x,

we get α (τ) −→∗P n. Therefore, we obtain t .int α (τ).
Case τ = (x : σ1)→ τ2 and t −→∗P fail: Contradicts the assumption.
Case τ = (x : σ1) → τ2 and t −→∗P fix(f, λx. t′): Let κ1 = ST (σ1) and

κ2 = ST (τ2). We show that there exists t1 such that

– α (τ) −→∗P fix(f, λx. t1) and
– [v1/x][fix(f, λx. t′)/f]t′ .κ2 [v2/x][fix(f, λx. t1)/f]t1 for any values v1 and
v2 such that v1 .κ1 v2.

Let t1 be if ∗ ∨ β (x : σ1) then α (τ2) else α (κ2), then α (τ) = fix(f, λx. t1). If
|=P

v,∧ v1 : σ1, then we have |=P [v1/x][fix(f, λx. t′)/f]t′ : [v1/x]τ2. Since

[v2/x][fix(f, λx. t1)/f]t1 −→∗P [v2/x]α (τ2) = α ([v2/x]τ2) = α ([v1/x]τ2)

by Lemmas 7 and 4, we get

[v1/x][fix(f, λx. t′)/f]t′ .κ2 [v2/x][fix(f, λx. t1)/f]t1

by I.H. If 6|=P
v,∧ v1 : σ1, then we have 6|=P

v,∧ v2 : σ1 by Lemma 3, and hence,
β (v2 : σ1) −→∗P false or β (v2 : σ1) −→∗P fail by Lemma 9. Since [v2/x][fix(f, λx. t1)/f]t1 −→∗P
fail, we obtain

[v1/x][fix(f, λx. t′)/f]t′ .κ2 [v2/x][fix(f, λx. t1)/f]t1

as required.

29

Lemma 11. |=P
v v1 : (x : σ)→ τ if and only if |=P v1 v2 : [v2/x]τ for any v2

such that α∧ (σ) −→∗P v2.

Proof. “Only-if” direction: Obvious from (2) of Lemma 8.
“If” direction: Suppose |=P v1 v2 : [v2/x]τ2 for any v2 such that α (σ) −→∗P

v2. We show that |=P v1 v
′
2 : [v′2/x]τ2 for any v′2 such that |=P

v,∧ v
′
2 : σ. We have

v′2 .ST(σ) α (σ) by Lemma 10, and hence, by Lemma 6, there exists v′′2 such that
α (σ) −→∗P v′′2 and v′2 . v′′2 . By the assumption, we get |=P v1 v

′′
2 : [v′′2/x]τ2.

Therefore, we obtain |=P v1 v
′
2 : [v′2/x]τ2 by Lemmas 3 and 4.

Proof (Proof of Lemma 1). Let

– Γ = x1 : σ1, . . . , xm : σm and
– τ = (xm+1 : σm+1)→ · · · → (xn : σn)→{r : int | φ}.

By the definition of (|=P) and the semantics,

Γ |=P t : τ

⇐⇒ |=P λx1. . . . λxm. t : (x1 : σ1)→ · · · → (xn : σn)→{r : int | φ}

⇐⇒ ∀v1, . . . , vn.
∧

i∈{1,...,n}

α∧
(
[vj/xj]j∈{1,...,i−1}σi

)
−→∗P vi ⇒

|=P t vm+1 . . . vn :
{
r : int

∣∣ [vj/xj]j∈{1,...,n}φ
}

(by Lemma 11)

⇐⇒ ∀v1, . . . , vn.
∧

i∈{1,...,n}

α∧
(
[vj/xj]j∈{1,...,i−1}σi

)
−→∗P vi ⇒

∀a. t vm+1 . . . vn −→∗P a ⇒ |=P a :
{
r : int

∣∣ [vj/xj]j∈{1,...,n}φ
}

⇐⇒ ∀v1, . . . , vn.
∧

i∈{1,...,n}

α∧
(
[vj/xj]j∈{1,...,i−1}σi

)
−→∗P vi ⇒

∀a. t vm+1 . . . vn −→∗P a⇒
a 6= fail ∧ |=P assert([a/r][vj/xj]j∈{1,...,n}φ) : int

⇐⇒ ∀v1, . . . , vn.
∧

i∈{1,...,n}

α∧
(
[vj/xj]j∈{1,...,i−1}σi

)
−→∗P vi ⇒

|=P let r = t vm+1 . . . vn in assert([vj/xj]j∈{1,...,n}φ) : int

⇐⇒ |=P let x1 = α∧ (σ1) in . . . let xn = α∧ (σn) in

let r = t x1 . . . xn in assert(φ) : int

⇐⇒ |=P let x1 = α∧ (σ1) in . . . let xm = α∧ (σm) in let rm = t in

assert(let xm+1 = α∧ (σm+1) in let rm+1 = rm xm+1 in . . .

let xn = α∧ (σn) in let rm+1 = rm xm+1 in φ) : int

(since α∧ (σi) does not fail)

= |=P let x1 = α∧ (σ1) in . . . let xm = α∧ (σm) in let rm = t in

30

β (rm : τ) : int

= |=P CΓ,τ [t] : int

⇐⇒ CΓ,τ [t] 6−→∗P fail

31

